
Stephaochratidin A, a Rare Stephacidin-Asperochratide Hybrid with
Ferroptosis Inhibitory Activity from the Deep-Sea-Derived
Aspergillus ochraceus
Zheng-Biao Zou,⊥ Yan Li,⊥ Yuan Wang,⊥ Chun-Lan Xie, Ze-Qing Li, Shan-Shan Nie, You Li,
Si-Yu Fang, Tian-Hua Zhong, Li-Sheng Li,* and Xian-Wen Yang*

Cite This: Org. Lett. 2024, 26, 5695−5699 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: One rare stephacidin-asperochratide hybrid, stephaochratidin A
(1), was isolated from the deep-sea-derived Aspergillus ochraceus MCCC
3A00521. The relative structure of 1 was determined by comprehensive analyses
of its 1D and 2D NMR data as well as HRESIMS data. And the absolute
configuration was unambiguously assigned by ECD calculations and the X-ray
single-crystal diffraction analysis. Plausible biosynthetic pathway of 1 was
proposed. Stephaochratidin A (1) exhibited significant ferroptosis inhibitory
activity with the EC50 value of 15.4 μM by downregulating HMOX-1 expression
and lipid peroxidation.

Prenylated indole alkaloids are characterized as diketopi-
perazine or bicyclo[2.2.2]diazaoctane rings, which are

derived from tryptophan, proline, and isoprene units.1

Prenylated indole alkaloids are characteristic metabolites
produced by the fungi Aspergillus and Penicillium, and contain
various skeletons such as stephacidin, brevianamide, para-
herquamide, asperparaline, marcfortines, sclerotiamide, mal-
brancheamide, avrainvillamide, and notoamide.2 Prenylated
indole alkaloids are well-known for their remarkable
cytotoxicity. For example, stephacidin B showed potent
cytotoxicity against various human tumor cells with IC50
values ranged from 0.06 to 0.46 μM;3 6-epi-avrainvillamide
exhibited strong cytotoxicity against HL-60 and A549 cells
with IC50 values of 1.88 and 1.92 μM, respectively;1b

sclerotiamide C possessed effective cytotoxicity against HeLa,
A549, HepG2, and SMMC7721 cells with an IC50 value of
approximately 1.6 μM.1e Due to their unique skeletons and
remarkable cytotoxicity, prenylated indole alkaloids have
become a fascinating target for total synthesis and biosyn-
thesis.4

In the course of our ongoing research for structurally novel
and biological significant secondary metabolites from deep-sea-
derived fungi,5 the strain Aspergillus ochraceus MCCC 3A00521
isolated from the Northeastern Pacific at a depth of −1334 m
was chosen for systematic chemical investigation because of
the potent ferroptosis inhibitory activity of its crude extract. As
a result, one rare stephacidin, stephaochratidin A (1, Figure 1)
was obtained, together with two known analogues, stephacidin

A (2)3 and notoamide E (3, Figure S1).1a Herein, we report
the isolation, structure, and biological effects of these isolates.
Stephaochratidin A (1) was obtained as colorless crystals. Its

molecular formula of C35H39N3O7 with 18 degrees of
unsaturation was established by HRESIMS (m/z: [M + Na]+
calcd for C35H39N3O7Na 636.2686; found 636.2671). Detailed
analyses of 1H and 13C NMR data implied that compound 1
(Table 1) possessed a stephacidin fragment,3 except for the
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Figure 1. Chemical structure of stephaochratidin A (1).
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additional presence of one olefinic quaternary carbon at δC
130.8 (C-2′), one olefinic methine [δH 7.97 (s, 1H, H-6′), δC
155.5 (C-6′)], one extra carbonyl carbon at δC 173.4 (C-3′),
two methyls [δH 1.57 (d, 3H, J = 6.9 Hz, 7′-Me), δH 0.81 (d,
3H, J = 6.5 Hz, 10′-Me); δC 17.4 (C-7′), δC 17.9 (C-10′)],
three methines [δH 3.27 (d, 1H, J = 11.9 Hz, H-1′), δH 5.23
(m, 1H, H-5′), δH 4.35 (m, 1H, H-9′); δC 44.8 (C-1′), δC 78.0
(C-5′), δC 65.0 (C-9′)], and one nonprotonated carbon at δC
93.9 (C-8′). The HMBC correlations from H-7′ to C-5′ and
C-6′; H-5′ to C-2′; H-6′ to C-3′; H-1′ to C-2′, C-3′, C-6′, C-
8′, C-3, and C-10; H-10′ to C-8′ and C-9′ as well as the COSY
cross-peaks of H-7′/H-5′/H-6′ and OH-9′/H-9′/H-10′
suggested a C9 polyketide fragment containing an α,β-
unsaturated γ-lactone ring. Thus, the planar structure of 1
was elucidated, which possessed a stephacidin-asperochratide
hybrid scaffold (Figure 2).
In the NOESY spectrum, correlations were found of H-6′ to

H-4/H-10/8′-OH, H-4 to H-10/8′-OH, 8′-OH to H-10, and
H-1′ to H-21/10′-Me, indicating the relative configuration of

C-10, C-21, C-1′, C-8′, and C-9′ (Figure 2). However, the
stereochemistry of C-11, C-17, and C-7′ could not be
determined by NOE experiment. To further confirm the
structural correctness of 1, a suitable single crystal was
successfully obtained from a mixed solvent system (MeOH/
H2O, 98:2) with a slow evaporation method and measured on
an XtaLAB Pro: Kappa single diffractometer using Cu Kα
radiation. The X-ray diffraction experiment (Figure 3) further

certified the fantastic structure [Flack parameter 0.04(7)], and
the absolute configuration of 1 was finally determined as
10S,11R,17S,21S,1′S,5′S,8′S,9′S, which was also supported by
comparison of the experimental and calculated ECD spectra
(Figure 4).
The biosynthetic pathway to stephaochratidin A (1) is

proposed as illustrated in Scheme 1. A prior study has
demonstrated the utilization of L-malic acid by a fungal PKS-
NRPS synthetase TraA to construct the butyrolactone ring in
the biosynthesis of terrestric acid.6 In this study, we propose a
similar PKS-NRPS pathway capable of utilizing L-malic acid,
acetyl-CoA, and malonyl-CoA to generate the aldehyde
intermediate (i). Subsequently, intermediate (i) can undergo

Table 1. 1H and 13C NMR Spectroscopic Data for
Stephaochratidin A (1) in DMSO-d6 (J in Hz)

position δC, type δH, mult (J in Hz)

1 10.57 s
2 140.9, C
3 106.2, C
4 119.5, CH 6.80 d (8.5)
5 108.0, CH 6.32 d (8.5)
6 147.2, C
7 104.8, C
8 132.9, C
9 121.4, C
10a 39.1, CH 4.02 d (12.0)
11 67.5, C
12 167.5, C
14 43.5, CH2 3.33 m
15 24.2, CH2 2.03 m; 1.86 m
16 28.7, CH2 2.59 m; 1.86 m
17 67.6, C
18 168.6, C
20 29.6, CH2 2.13 dd (13.2, 10.2); 1.95 dd (13.2, 5.3)
21 44.8, CH 2.77 dd (10.2, 5.4)
22 34.2, C
23 21.4, CH3 0.98 s
24 27.6, CH3 1.34 s
25 118.0, CH 6.95 d (9.8)
26 128.9, CH 5.72 d (9.8)
27 75.1, C
28 27.3, CH3 1.37 s
29 27.2, CH3 1.36 s
1′ 44.8, CH 3.27 d (11.9)
2′ 130.8, C
3′ 173.4, C
5′ 78.0, CH 5.23 m
6′ 155.5, CH 7.97 s
7′ 17.4, CH3 1.57 d (6.9)
8′ 93.9, C
9′ 65.0, CH 4.35 m
10′ 17.9, CH3 0.81 d (6.5)
8′-OH 6.39 s
9′-OH 5.02 d (6.3)

aObserved in HMBC and HSQC spectra.

Figure 2. Key HMBC (red arrows) and NOESY (blue arrows)
correlations of stephaochratidin A (1).

Figure 3. X-ray crystallographic structure of stephaochratidin A (1)
with 30% ellipsoid contour probability.
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Knoevenagel condensation to yield butyrolactone intermediate
(ii). The key block (iii) can be formed from the intermediate
(ii) via a series of decarboxylation, reduction, and dehydration
reactions. Meanwhile, deprotonation of a common fungal
secondary metabolite stephacidin A (2) can afford the reactive
intermediate iv, namely aspergamide B.7 Ultimately, 1 could be
formed through nucleophilic addition between intermediates
(iii) and (iv) followed by a hydroxylation, which is similar to
the cyclization mechanism in the biosynthesis of cyclopiazonic
acid.8

Stephaochratidin A (1) was tested for inhibitory activity
against glutathione peroxidase 4 inhibitor RSL3-induced
ferroptosis. It showed potent effect on human melanoma cell
A375, human renal cell carcinoma cell 786-O, and human
nonsmall cell lung cancer cell H1299, with the EC50 value of
15.4 μM in A375 cells. Interestingly, 1 could also significantly
inhibit ferroptosis triggered by system xc-inhibitor erastin and
iron oxidizer FINO2, which induced ferroptosis through
different mechanisms,9 indicating 1 could be a common
inhibitor of ferroptosis (Figure 5).
Ferroptosis is a type of regulated cell death in an iron and

lipid peroxidation dependent manner.10 Then, we tested the
bioactivities of 1 as an iron chelator and antioxidant. As shown
in Figure 6A−B, compound 1 did not exhibit activities as an
iron chelator and antioxidant. In contrast, compound 1
effectively inhibited RSL3-induced lipid peroxidation (Figure
6C).
To further explore the mechanism of how stephaochratidin

A (1) regulates ferroptosis, 1 was further examined on the
expression of ferroptosis-related genes. As a result, 1

attenuated both the protein and mRNA level of HMOX-1
induced by RLS3 (Figure 6D−E). HMOX-1 has been
implicated in ferroptosis.11 Consistent with previous stud-
ies,11,12 inhibition of the enzymatic activity of HMOX-1 by
small-compound ZnPP was able to inhibit ferroptosis (Figure
6F). Therefore, 1 could inhibit ferroptosis by suppressing
HMOX-1 expression and lipid peroxidation induced by RSL3.
In summary, one novel stephacidin-asperochratide hybrid

(stephaochratidin A, 1) and two known analogues (stephacidin
A, 2; notoamide E, 3) were isolated from the deep-sea-derived
fungus Aspergillus ochraceus MCCC 3A00521. Stephaochrati-
din A (1) inhibited RSL3-induced ferroptosis with the EC50

Figure 4. Experimental and calculated ECD spectra of 1.

Scheme 1. Biosynthetic Proposal for Stephaochratidin A (1)

Figure 5. Stephaochratidin A (1) is a common ferroptosis inhibitor.
(A−C) Compound 1 significantly inhibited RSL3-induced ferroptosis
in A375, 786-O, and H1299 cells. (D) Compound 1 suppressed
RSL3-triggered ferroptosis in a dose dependent manner. (E−F)
Compound 1 remarkably prohibited erastin or FINO2-stimulated
ferroptosis in A375 cells.
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value of 15.4 μM by suppressing HMOX-1 expression and lipid
peroxidation.
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ferroptosis by suppressing HMOX-1 expression and lipid perox-
idation. (A) Compound 1 exhibited no radical scavenging activity on
DPPH. (B) Compound 1 showed no iron chelating activity. (C)
Compound 1 reduced lipid peroxidation. (D−E) Compound 1
inhibited HOMX-1 protein and mRNA level. (F) ZnPP significantly
suppressed RSL3-induced ferroptosis.
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